Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain ; 146(4): 1357-1372, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36074901

RESUMO

The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients. In silico modelling suggested that the patient variants interfere with the interactions between the ATP6V0C and ATP6V0A subunits during ATP hydrolysis. Consistent with decreased vacuolar H+-ATPase activity, functional analyses conducted in Saccharomyces cerevisiae revealed reduced LysoSensor fluorescence and reduced growth in media containing varying concentrations of CaCl2. Knockdown of ATP6V0C in Drosophila resulted in increased duration of seizure-like behaviour, and the expression of selected patient variants in Caenorhabditis elegans led to reduced growth, motor dysfunction and reduced lifespan. In summary, this study establishes ATP6V0C as an important disease gene, describes the clinical features of the associated neurodevelopmental disorder and provides insight into disease mechanisms.


Assuntos
Epilepsia , ATPases Vacuolares Próton-Translocadoras , Humanos , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Epilepsia/genética , Trifosfato de Adenosina
3.
Dev Med Child Neurol ; 63(12): 1448-1455, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34114234

RESUMO

AIM To determine which patients with cerebral palsy (CP) should undergo genetic testing, we compared the rate of likely causative genetic variants from whole-exome sequencing in individuals with and without environmental risk factors. METHOD Patients were part of a convenience and physician-referred cohort recruited from a single medical center, and research whole-exome sequencing was completed. Participants were evaluated for the following risk factors: extreme preterm birth, brain bleed or stroke, birth asphyxia, brain malformations, and intrauterine infection. RESULTS A total of 151 unrelated individuals with CP (81 females, 70 males; mean age 25y 7mo [SD 17y 5mo], range 3wks-72y) participated. Causative genetic variants were identified in 14 participants (9.3%). There was no significant difference in diagnostic rate between individuals with risk factors (10 out of 123; 8.1%) and those without (4 out of 28; 14.3%) (Fisher's exact p=0.3). INTERPRETATION While the rate of genetic diagnoses among individuals without risk factors was higher than those with risk factors, the difference was not statistically significant at this sample size. The identification of genetic diagnoses in over 8% of cases with risk factors suggests that these might confer susceptibility to environmental factors, and that further research should include individuals with risk factors. What this paper adds There is no significant difference in diagnostic rate between individuals with and without risk factors. Genetic variants may confer susceptibility to environmental risk factors. Six causative variants were identified in genes not previously associated with cerebral palsy. Global developmental delay/intellectual disability is positively associated with a genetic etiology. Extreme preterm birth, stroke/brain hemorrhage, and older age are negatively associated with a genetic etiology.


Assuntos
Paralisia Cerebral/genética , Variação Genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Testes Genéticos , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Nascimento Prematuro , Sequenciamento do Exoma , Adulto Jovem
4.
Genet Med ; 23(10): 1912-1921, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34113010

RESUMO

PURPOSE: In this study, we aimed to characterize the clinical phenotype of a SHANK1-related disorder and define the functional consequences of SHANK1 truncating variants. METHODS: Exome sequencing (ES) was performed for six individuals who presented with neurodevelopmental disorders. Individuals were ascertained with the use of GeneMatcher and Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources (DECIPHER). We evaluated potential nonsense-mediated decay (NMD) of two variants by making knock-in cell lines of endogenous truncated SHANK1, and expressed the truncated SHANK1 complementary DNA (cDNA) in HEK293 cells and cultured hippocampal neurons to examine the proteins. RESULTS: ES detected de novo truncating variants in SHANK1 in six individuals. Evaluation of NMD resulted in stable transcripts, and the truncated SHANK1 completely lost binding with Homer1, a linker protein that binds to the C-terminus of SHANK1. These variants may disrupt protein-protein networks in dendritic spines. Dispersed localization of the truncated SHANK1 variants within the spine and dendritic shaft was also observed when expressed in neurons, indicating impaired synaptic localization of truncated SHANK1. CONCLUSION: This report expands the clinical spectrum of individuals with truncating SHANK1 variants and describes the impact these variants may have on the pathophysiology of neurodevelopmental disorders.


Assuntos
Proteínas do Tecido Nervoso , Transtornos do Neurodesenvolvimento , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Neurônios , Fenótipo , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA